 Mellat al-dawlat:

صممت الدراسة الحالية بهدف دراسة التأثيرات الالودوبيائية المتبادلة بين نباتي القرع والخيار في الإنبات وبعض صفات النمو، وتضمن البحث تجارب في المختبر وكذلك في البيوت الزجاجية.

1- تأثير المستخلصات المائية للقرع والخيار بتركيز (0.5%), وزن: حجم في إنبات نمو القرع أظهرت النتائج تباين في الاستجابة من ناحية الإنبات والنمو استنادًا إلى المقارنة، كانت أعلى نسبة زيادة (33.3) % بتأثير المستخلص المائي للقرع بتركيز (3%)، من جهة أخرى بلغت أعلى نسب اكتشال (13.3) % بتأثير المستخلص المائي لمستخلص الخيار.

2- تأثير المستخلصات المائية لكل نباتين بتركيز (0.5%) وزن: حجم في إنبات الخيار ونموه إذ تبين أن المستخلصات المائية للقرع والخيار بالتركيزين (0.5%) سببت حصول اكتشال معنوي وبلغت أعلى نسبة مئوية للاكتشال (8.8) % على التوالي بتأثير المستخلص المائي للقرع عند التركيز (3%).

3- تأثير إضافة مخلفات القرع والخيار في الإنبات والنمو للقرع بين النتائج وجود اختلاف في استجابة القرع، كانت أعلى نسبة زيادة في الإنبات والنمو (10، 21.7، 129، 129.4، 13.9، 10، 4) % من المقارنة بتأثير مخلفات القرع والمحضنة لمدة أسبوع، في حين حصلت أعلى نسبة اكتشال في النمو (40.2، 4.5، 28.4، 22.6، 27.2، 10.6، 11.6) % على النسبة المئوية للانتشار (25.3، 21.5) % على التوالي في الترب المضاف لها مخلفات القرع والمحضنة لمدة أسبوع.

4- تأثير إضافة مخلفات القرع والخيار في أنابيب البذور والنمو للخيار لوحظ حصول أعلى نسبة مئوية للانتشار (10.6) % في النمو (11.6)، (3.4، 4.8، 8) % بتأثير مخلفات الخيار والمحضنة لمدة أسبوع، بينما بلغت أعلى نسبة الاكتشال في الإنبات والنمو (22.6، 28.2) % على التوالي في الترب المضاف لها مخلفات القرع والمحضنة لمدة أسبوع.

التاريخ تسليم البحث: 02/12/2011
تاربخ قبول النشر: 2012/4/11

Cucurbita pepo
Cucumis sativus
Alternative Effect Between *Cucurbita pepo* and *Cucumis sativus* On germination and some growth characteristic

Lect. Eman R. Al-Rawi
Department of Biology
College of Science / Mosul University

Abstract:

The present study was designed to determine the alternative effect between *Cucurbita* and *Cucumis*, the research involved two experiments in laboratory also in green house and the results showed that:-

1-The effect of aqueous extract of *Cucurbita* and *Cucumis* at concentrations (0,3,5)%w:v in germination and seedling growth of *Cucurbita*. The results showed a variation that there is response in germination and growth when compared with the control, the highest percent of increasing was (33.3,23,7.3)% in the *Cucurbita* extract at (3%). On the other hand, the highest percent of reduction was (13.3,9,6) by effect of *Cucumis* extracts.

2-The effect of aqueous extract of *Cucurbita* and *Cucumis* at concentrations (0,3,5)%w:v in germination and seedling growth of *Cucumis* they caused reduction, the highest percent of reduction was (51.8,61.1,53.5)%, respectively at (3%) of *Cucurbita* extracts.

3-The effect of addition of *Cucurbita* & *Cucumis* residues in germination and growth of *Cucurbita*, the results revealed a different response, the highest percent which was (10,21.7,13.9,129.4,91)% were shown by *Cucurbita* residues that incubated for one week, while the highest percent of reduction was (20,40.2,28.4,24.5)% at the soil contain *Cucumis* residues without incubation.

4-The effect of aqueous extract of *Cucurbita* and *Cucumis* at concentrations (0,3,5) % w:v in germination and seedling growth of *Cucumis* the highest increasing(10.6%) in germination and (11.6,4,8.8,1.3) % in growth for *Cucumis* residues that incubated, where is the highest reduction was
(28.2, 22.6, 6.7, 3, 27.2, 21.5) % respectively in the soil contain *Cucurbita* residues incubated.

Also the results showed that *Cucurbita* and *Cucumis* residues (not incubated) and *Cucumis* residues incubated caused increasing content of carbohydrate in *Cucurbita* and *Cucumis*, the highest value (31.82%) in *Cucurbita* affected by (*Cucurbita* residues not incubated), but the *Cucurbita* residues incubated caused reduction in content of carbohydrate in *Cucurbita* and *Cucumis*, the highest reduction (30.45%) in *Cucurbita*.

المقدمة

الأليوبولائي هو علم جديد يشير إلى التفاعل المنشط أو المثبط بين نوعين من النباتات، عندما تتعرض النباتات إلى المركبات التضخمية تتأثر نموها وتطورها وتتمل المركبات المرمية تثبيت أو تأخير الإنباتات، انخفاض في طول المجموع الخضري والجذري والوزن الجاف وبعض صفات النمو الأخرى. بعد هذه التأثيرات المظهرية يفوت ثانية لتفاوت أولية سيئة العديد من التأثيرات المتخصصة على المستوى الخلاقي والجزيئي، أن معظم المركبات المسؤولة عن ظاهرة الأليوبولائي هي مركبات ثانية تصنف النباتات والكائنات الدقيقة تتحرر هذه المركبات من الأجزاء النباتية Root، Leaching، Volatilization، إفرازات الجذور، وتحلل المتبقيات النباتية في التربة exudation. تتكوين هذه المركبات ذات طبيعة كيميائية لها القابلية على الذوبان في الماء.

1. تأثيرات المستخلاصات المائية

تأثر تحال التسبقات النباتية في الدرجة

المواد وطرق البحث

تضمن البحث إجراء تجارب في المختبر وتجارب في البيوت الزراعية، شملت التجارب المختبرية دراسة التأثير الإلابيولياني للمستخلصات المائية للمجموع الخضري للقاح والخيار بتركيزات (5, 3, 0, 5) وزن: حجم في إثبات ونحو البقع والخيار. أما في تجارب البيوت الزراعية، تم دراسة تأثير التحصين لمختلفات القاح والخيار بتركيز 3 وزن: وزن في إثبات ونحو البقع والخيار. وفي حالتين (تحضير وبدون تحضين)، فذن التجارب في البيوت الزراعية التابع لقسم علوم الحياة/كلية العلوم /جامعة الموصل بتاريخ 10/3/2012.

جمعت النماذج النباتية من حقل مزرعة في قرية الرحمانية قرب حي المشي، أخذت الأجزاء الهوائية عملت بحذاء الجاحظة للتخلص من الأثرية التي تغطيها، ووضعها على مشبك معدني. لتجف بشكل أولي، أما التجفيف النباتي فتمه باستعمال فرن كهربائي بدقة 70 م لمدة 72 ساعة. وبعد ذلك طحنت الأجزاء النباتية مع بعضها بشكل مسحوق ناعم باستخدام الجهاز وحفظت في أكياس بلاستيكية في التلاجة ليحين الاستعمال. تم الحصول على البذور من الحقل نفسه، واختبرت معتمدة مختبريا بدرجة حرارة (25 ± 2 م) وكانت للقاح 80% وللخيار 85%.

1- المستخلصات المائية:

حضرت المستخلصات المائية لكل من نباتي القاح والخيار بتركيز (3 و 5) وزن: حجم

بأخذ (3, 5)
التاثيرات الأليوبولية...

غُم من المسحوق الداخلي للنماذج المجموعة الخضراء لكل من البذورتين كلا على حدة وأضيف لها Blender (100) مل ماء مقطوع وضعت في جهاز الخلط ثم رشحت باستخدام قمع زجاجي مزود بورق ترشيح نوع Whatman No.1، وجمع الرائق لكل عينة Hou&Chou(1981).

2- الاختبار الإيجابي للمستخلصات المائية

استخدمت أطباق بذرية بقطر (15 سم) وضع في كل طبق (20) بذرة من بذور النباتات المستخدمة في البحث كلا على حدة، كل طبق غطى بورقتي ترشيح أسفل وأعلى البذور وبواقع 3 مكرارات لكل معاملة، أضيف (9) مل من المستخلص المحضر لكل طبق استعملت نفس الكمية من الماء المقطوع للمقارنة، وغلقت هذه الأطباق بورق الـ (Para Film) منعا للتلوث والتتخر كما أوردتها (الجوري، 2000) وضعت الأطباق في الحاضنة نوع Gallenhamp في فترة ظل تصل درجة حرارة (25 ± 2) م. أضيف بعدما الماء المقطوع إلى كل طبق حسب الحاجة للتعويض عن النقص الحاصل في الماء وبعد 5 أيام خفض عدد البذورات إلى 5 في كل طبق.

3- الصفات المدروسة

عدد البذور المزروعة (100 x ISTA) (1976).

أ- النسبة المئوية للإنباتات % = عدد البذور المزروعة

ب- طول البذرة (سم):

تتم قياس أطوال حمس بذور النباتات الطبيعية في كل معاملة لكل مكرر.

ج- الوزن الجاف للبازلاء (ملغم):

وُضعت البذور في أكياس ورقية منقية وحُفِت في فرن كهروني لمدة 72 ساعة بدرجة حرارة 70 م ثم وزنت باستخدام ميزان كهروني حساس (460). (Melter pm)

4- تجربة الزيت الزجاجي:

تم تجفيف الأوراق (المجموعة الخضراء) لكل من القرع والخيار كلا على حدة، استخدم التركز 3% وزن: وزن (أضيف 3 غم أوراق حافة إلى 100 غم تربة) تم وضع هذه المخلفات في أصص بلاستيكية سعة (2 لغم) بقطر (7 أسسم) وارتفاع (15 أسسم) وتَركت لفترة تحضير (1) أسبوع، و تم زراعة النباتات في تربة أضيف إليها المخلفات (بدون تحضير) وبواقع 3 مكرارات لكل معاملة، للمقارنة استخدمت (تربة بدون مخلفات) ثم سقيت بالماء وبعد مرور 10 أيام من الزراعة حسبت عدد البذورات الظاهرة في كل أصص و حسبت النسبة المئوية للإنباتات وخفض عدد البذورات إلى 5 بعد
6. تقدير الكاربوهيدرات

تُجرى عملية تقدير الكاربوهيدرات لأوراق النباتات بتطبيق طريقة Herbert (1971) وآخرين. إذ تم حرق العينة النباتية في فناجين زجاجية مع (10 ml) من الماء المقطر وبدت انتان نتائج فصل الكاربوهيدرات المذابة في الرواسب بعملية الطرد المركزي، واستعمال جهاز Hettich EBA35 وقدرت الكاربوهيدرات باستخدام طريقة الفينول-حمض الكبريتيك Bوصفة قياس الكثافة المئوية عند الطول الموجي (388 nm) باستخدام جهاز المطياف (Spectrophotometer pyeuni/cam).

6. التحليل الإحصائي

نفذت التجارب حسب تصميم القطاعات العشوائية الكامنة (R.C.B.D.) واجرى التحليل الإحصائي للبيانات باستخدام الحاسوب الآلي بوسطة برنامج SAS، تم مقارنة المتوسطات الحسابية باستخدام اختبار دنكن معدد المدى عند مستوى احتمال (5%) بالاعتماد على Torrie & Steel (1980).

وقد حسبت النسب المئوية للتثبيط والزيادة في كل من الصنف المدروسة حسب المعادلة الآتية:

\[
\text{Reduction or Stimulation \%} = \frac{100 - A}{B} \times 100
\]

لمективة B=

القياس المطلوب للنباتات في المعاملة، A= القياس المطلوب للنباتات في المقارنة (المزوري، 1996).

النتائج

تشير النتائج المبينة في الجدول (1) إلى أن تأثير المستخلصات المائية لنباتي الهرتان والخيلار بتراكيز (5, 3)٪ وزن حجم في أوراق النبات ومتوسط القيمة مقارنة مع القيمة الممثالة في القياس المماثل للنباتات يوضح أن النباتات اختفت من مكونا وتفوق نبات القرع على نبات الخيام في التأثير في نسبة أنبات الهرتان ومتوسط القيمة مقارنة مع القياس المماثل للنباتات. عند مقارنة متوسط تأثير التراكيب وجدت فروقات معنوية حيث تأثير التراكيب (3)٪ أكبر في إنبات الهرتان والوزن الجاف للبغراء في حين لم تظهر فروقات معنوية بالنسبة لتأثير التراكيب على صفة طول البغراء. ومن النتائج البغراء التأثيرات البغراء النتائج تباين في التأثير بين الزيادة والنقصان، فقد سبب المستخلص المائي لفرع بالتركيز (5, 3)٪ تحسين في الأوراق والنمو
و كانت أعلى نسبة زيادة (33.3\%) عند التركيز (3\%) من جهة أخرى سبب التركيز (3\%) للمستخلص المائي للخيار أعلى نسبة اختزال في الأنبات (13.3\%) بينما سبب التركيز (5\%) أعلى نسبة اختزال في النمو (9\%) مقارنة مع الماء المقطر.

الجدول (1) تأثير المستخلصات المائية للقرع والخيار في إنبات البذور ونمو بادرات القرع

<table>
<thead>
<tr>
<th>النوع النبات</th>
<th>طول الباذرة (سم)</th>
<th>الانتباه %</th>
<th>العملاط</th>
<th>مقارنة</th>
</tr>
</thead>
<tbody>
<tr>
<td>قرع</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.3b</td>
<td>10b</td>
<td>75c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2a+</td>
<td>12.3a+</td>
<td>100a+</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>54b+</td>
<td>11ab+</td>
<td>80b+</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>54.8 a</td>
<td>11.1a</td>
<td>85a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.3a</td>
<td>10a</td>
<td>75a</td>
<td>مقارنة</td>
<td></td>
</tr>
<tr>
<td>52b</td>
<td>9.4b</td>
<td>65c</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>50.1c</td>
<td>9.1b</td>
<td>73ab</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>51.8b</td>
<td>9.5b</td>
<td>71b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.3ab</td>
<td>10a</td>
<td>75b</td>
<td>مقارنة</td>
<td></td>
</tr>
<tr>
<td>54.6a</td>
<td>10.9a</td>
<td>82.5a</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>52.1b</td>
<td>10.1ab</td>
<td>75.5b</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

لاحظ وجود فروقات معنوية وتقلو نبات القرع في التأثير بينما أظهرت مقارنة متوسطات تأثير التراكيز وجود فروقات معنوية وتبين أن التركز (3\%) الأكثر تأثيرا في الأنبات والنمو مقارنة مع الماء المقطر.

توضح النتائج المعيبة في الجدول (2) تأثير المستخلصات المائية للقرع والخيار عند التركيزين (5.3\%) في إنبات البذور والنمو للفواكه من مقارنة المتوسطات الحسابية لتأثير النباتات واناظر وجود فروقات معنوية وتقلو نبات القرع في التأثير بينما أظهرت مقارنة متوسطات تأثير التراكيز وجود فروقات معنوية وتبين أن التركز (3\%) الأكثر تأثيرا في الأنبات والنمو مقارنة مع الماء المقطر.

من التداخل بين نوع النباتات، تأثير التراكيز يبين أن المستخلصات المائية للقرع والخيار بالتركيزين (5.3\%) سبب حصول اختزال معنوي في إنبات البذور ونمو الباذرات الخيار بلغت أعلى نسبة معنوية للاختزال في إنبات البذور ونمو الباذرات (53.5\%) على التوالي يتسبب في تأثير المستخلص المائي للخيار عند التركيز (3\%) من المستخلص المائي للخيار عند التركيز (3\%).
الجدول(2) تأثير المستخلصات المائية للقرع والخيار في أنابيب البذور ونمو بادرات الخيار

<table>
<thead>
<tr>
<th>الوزن الجاف للبذور (غم)</th>
<th>طول البذور (مم)</th>
<th>المخالبات</th>
<th>نوع المخالبات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 a</td>
<td>9.0 a</td>
<td>85 a</td>
<td>مقارنة خيار</td>
</tr>
<tr>
<td>20 d</td>
<td>3.5 d</td>
<td>41 e</td>
<td>3%</td>
</tr>
<tr>
<td>29 c</td>
<td>6.0 b</td>
<td>48 c</td>
<td>5%</td>
</tr>
<tr>
<td>30.7 b</td>
<td>6.2 b</td>
<td>58 b</td>
<td>متوسط تأثير الخيار</td>
</tr>
<tr>
<td>43 a</td>
<td>9 a</td>
<td>85 a</td>
<td>مقارنة قرع</td>
</tr>
<tr>
<td>36.3 c</td>
<td>6.5 c</td>
<td>65 c</td>
<td>3%</td>
</tr>
<tr>
<td>40 a</td>
<td>8.5 a</td>
<td>71 b</td>
<td>5%</td>
</tr>
<tr>
<td>39.8 a</td>
<td>8.0 a</td>
<td>73.7 a</td>
<td>متوسط تأثير القرع</td>
</tr>
<tr>
<td>43 a</td>
<td>9.0 a</td>
<td>85 a</td>
<td>مقارنة الخيار التراكيز</td>
</tr>
<tr>
<td>28.2 c</td>
<td>5.0 c</td>
<td>53 c</td>
<td>3%</td>
</tr>
<tr>
<td>34.5 b</td>
<td>7.3 b</td>
<td>59.5 b</td>
<td>5%</td>
</tr>
</tbody>
</table>

من مقارنة المتوسطات الحسابية لتُظهر أن الاختلافات متشابهة بين أنابيب القرع والخيار في أنابيب القرع ونموه في الجدول(3) لاحظ وجود فروقات معنوية وتفوق مخالبات نباتي القرع في الإناث والنمو ونهاية القرع، بينما حصلت فروقات في تأثيرات انسداد الزيادة والنقصان عند مقارنة أنابيب القرع، ونمواه في التربة المحمضت وغير المحمضت بمخالبات المباتين مع نباتات القرع النامية في مريحة المقارنة(بدون مخالبات).

من التداخل بين نمط النباتات وتأثير المخالبات(محمض أو غير محمض) أظهرت النتائج وجود اختلاف في استجابة نباتات القرع، كانت أعلى نسبة زيادة في أنابيب البذور(10%) تأثير مخالبات القرع غير المحمضت وآلى نسبة زيادة في النمو(21.7%، 2.9، 129.4، 13.9) عن المقارنة بتُأثير البذور المضاف إليها مخالبات القرع والمحضنة لمدة أسبوع، في حين حصلت أعلى نسبة أختزال في النمو(20، 40، 28.4، 24.5) عن المقارنة في الثلوج المضاف إليها مخالبات الخيار بدون تحضين.
إن النتائج المدونة في الجدول (4) تشير إلى اختلاف استجابة نباتات الخيار النامية في الترب المضاف لها مخلفات نباتات الخيار والقرع والمحضنة لمدة (أسبوع) مع النباتات الناميه في الترب المضاف لها مخلفات النباتين (بدون تحيض) ومقارنة مع تربة المقارنة (بدون مخلفات).

من مقارنة متوسط تأثير النباتين نلاحظ وجود فروقات معنوية وتفوق مخلفات الخيار في التأثير على إنبات ونمو الخيار، وإن مقارنة المتوسطات الحسابية للتحيض من عدم التحضين تبين وجود فروقات معنوية وحصول تباين في التأثير إذ كانت الترب المضاف لها المخلفات بدون تحيض التأثير الأكثر تأثيرا في نسبة إنبات النبات، بينما سببت الترب المضاف لها المخلفات والمحضنة لمدة (أسبوع) التأثير الأكبر في عمق الجذر ووزن المجموع الجذري في حين لم تلاحظ فروقات معنوية.

بينما أظهر التداخل بين نوع النبات ونوع المخلفات محضنة أو غير محضنة إلى أن أعلى نسبة معنوية للتحلز في الإنباتات الخيار (10.6%) وفي النمو (11.6, 212.4, 8.4, 3.8, 13.1%) يتأثر إضافة مخلفات نبات الخيار والمحضنة لمدة أسبوع عن النباتات النامية في تربة المقارنة (بدون مخلفات).

بينما بلغت أعلى نسب الاختزال في الإنبات والنمو (28.2%, 28.2%, 27.2%, 27.2%, 27.2%, 27.2%) على التوالي بالنسبة لنباتات الخيار النامية في الترب المضاف لها مخلفات القرع والمحضنة لمدة أسبوع.
الجدول (4) تأثير مخلفات القرع والخيار في إنباذ البذور ونمو نباتات الخيار

<table>
<thead>
<tr>
<th>عمق الجذر (سم)</th>
<th>وزن المجموع الضريبي (لم)</th>
<th>ارتفاع (سم)</th>
<th>% للإنباذ</th>
<th>الملاحظات</th>
<th>نوع النبات</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4 ab</td>
<td>195.3 b</td>
<td>15.5 b</td>
<td>85 c</td>
<td>مقارنة (بدون مخلّفات)</td>
<td>خيار</td>
</tr>
<tr>
<td>10.8 b</td>
<td>190 c</td>
<td>15.6 b+</td>
<td>88 b+</td>
<td>مخلّفات؛ بدون تحضيّن</td>
<td></td>
</tr>
<tr>
<td>12.4 a+</td>
<td>203.1 a+</td>
<td>17.3a+</td>
<td>94 a+</td>
<td>تحضيّن (أسبوع)</td>
<td></td>
</tr>
<tr>
<td>11.6 a</td>
<td>196.1 a</td>
<td>16.1 a</td>
<td>89 a</td>
<td>متوسط تأثير الخيار</td>
<td></td>
</tr>
<tr>
<td>11.4 b</td>
<td>195.3 b</td>
<td>15.5 b</td>
<td>85 c</td>
<td>مقارنة (بدون مخلّفات)</td>
<td>قرع</td>
</tr>
<tr>
<td>10.6b</td>
<td>189 c</td>
<td>13.8c</td>
<td>65 e</td>
<td>مخلّفات؛ بدون تحضيّن</td>
<td></td>
</tr>
<tr>
<td>8.3c</td>
<td>181 d</td>
<td>12.0 c</td>
<td>61 f</td>
<td>تحضيّن (أسبوع)</td>
<td></td>
</tr>
<tr>
<td>10.1b</td>
<td>188.4 b</td>
<td>13.8 b</td>
<td>70.3b</td>
<td>متوسط تأثير القرع</td>
<td></td>
</tr>
<tr>
<td>11.4 a</td>
<td>195.3 a</td>
<td>15.5 a</td>
<td>85 a</td>
<td>مقارنة (بدون مخلّفات)</td>
<td>تحضيّن</td>
</tr>
<tr>
<td>11.5a</td>
<td>189.9ab</td>
<td>14.7b</td>
<td>76.5c</td>
<td>مخلّفات؛ بدون تحضيّن</td>
<td></td>
</tr>
<tr>
<td>10.4b</td>
<td>192.1ab</td>
<td>14.7b</td>
<td>77.5b</td>
<td>تحضيّن (أسبوع)</td>
<td></td>
</tr>
</tbody>
</table>

تبين النتائج الموضحة بالشكل (1) تأثير إضافة مخلفات القرع والخيار في محتوى الكاربوهيدرات في نباتات القرع، بالإضافة حصول زيادة في محتوى الكاربوهيدرات في نباتات القرع النامية في الترب المضاف لها مخلفات القرع والخيار بدون تحضيّن ومخلفات الخيار المحضنة. وبلغت أعلى زيادة (31.82%) في نباتات القرع المضاف لها مخلفات القرع بدون تحضيّن، في حين حصل اختلاف في محتوى الكاربوهيدرات في نباتات القرع النامية في الترب المضاف لها مخلفات القرع والمحضنة لمدة أسبوع إذ بلغت نسبة الاختلاف (30.45%) عن المقارنة.
التأثيرات الأليوباثية...

الشكل (1) تأثير مخلفات الخيار والقرع في محتوى الكاربوهيدرات(جم/مل) في نبات الخيار

في الشكل (2) توضح النتائج حصول زيادة في محتوى الكاربوهيدرات في نباتات الخيار النامية في التربة المضافة لها مخلفات الخيار المحصنة ومحضنة ومخففات القرع بدون تحضين، وبلغت نسبة زيادة (21.39%) في نباتات الخيار النامية في التربة المضافة لها مخلفات الخيار المحصنة بينما حصل اختزال في محتوى الكاربوهيدرات لنباتات الخيار النامية في التربة المضافة لها مخلفات القرع ومحضنة لمدة أسبوع وبلغت نسبة الاختزال (16.17%) عند المقارنة (تربة بدون مخلفات).

الشكل (2) تأثير مخلفات الخيار والقرع في محتوى الكاربوهيدرات(جم/مل) في نبات الخيار

المناقشة

من خلال نتائج دراسة التأثير الأليوباثي لنباتي القرع والخيار في المختبر والبيت الزجاجي، اتضح أن كل من الأنبات وصفقات النمو قد تأثرت بصورة مباشرة أو غير مباشرة عند استخدام النيبات كمستخلص مائي أو متبقيات حافلة مطحونة وممزوجة بتربة. فقد لوحظ حصول زيادة في نسبة الأنبات ونحو القرع بتأثير المستخلص المائي للقرع (الجدول 1) وهذا يتفق مع دراسة Akmal وآخرين (2010) في تأثير المستخلص المائي لنبات الحلبة ويتراكيز مختلفة في
تشتت نمو بذور الحلبة بعد 7 أيام، كذلك بينت الراوي (2012) حصول زيادة في نسبة إناث بذور نباتات القمح بتأثير المستخلص المائي للغزالي (النوع الحمضى) وازداد عدد من الاحيان تأثير تثبيطي في بعض الأنواع الأخرى من النباتات (بورزان، 1989).

من جانب آخر بينت نتائج الدراسة حصول تثبيط في الأتات ونمو للفرع بتأثير المستخلص المائي للغزالي (النوع الحمضى) وازداد عدد من الاحيان تأثير تثبيطي في بعض الأنواع الأخرى من النباتات (بورزان، 1989).

وقد يعود إلى استخلاص مواد عضوية مغذية من المجموع الحمضى للبنات، أو أن بعض المركبات ذات الأليلوباثية لها تأثير تثبيطي وفي بعض الأحيان تلقيز في البناءات للنوع نفسه أو أنواع أخرى من النباتات (بورزان، 1989).

من جانب آخر بينت نتائج الدراسة حصول تثبيط في الأتات ونمو للفرع بتأثير المستخلص المائي للغزالي (النوع الحمضى) وازداد عدد من الاحيان تأثير تثبيطي في بعض الأنواع الأخرى من النباتات (بورزان، 1989).

وقد يعود إلى استخلاص مواد عضوية مغذية من المجموع الحمضى للبنات، أو أن بعض المركبات ذات الأليلوباثية لها تأثير تثبيطي وفي بعض الأحيان تلقيز في البناءات للنوع نفسه أو أنواع أخرى من النباتات (بورزان، 1989).

وقد يعود إلى استخلاص مواد عضوية مغذية من المجموع الحمضى للبنات، أو أن بعض المركبات ذات الأليلوباثية لها تأثير تثبيطي وفي بعض الأحيان تلقيز في البناءات للنوع نفسه أو أنواع أخرى من النباتات (بورزان، 1989).

من ناحية التثبيط أظهرت النتائج حصول تثبيت في نمو القرع بتأثير مخلفات الخيار المحضنة ونسبة المحضنة (الجدول 3) كما بينت النتائج تثبيت في نمو نباتات بتأثير مخلفات الخيار المحضنة ونسبة المحضنة (الجدول 4) وهذه النتائج أنسجمت مع ما كتبه الجلبي وأخرون (2002) بأن مخلفات زهرة الشمس الخلوتة بالرئيسيات سبب تثبيت معنوي في الارتفاع والوزن المجاني لنباتات الحنطة والشبل (وأشارت سعيد 2004) إلى أن مخلفات نباتات الشعير المضافة إلى النباتات سبب اختلافاً معنوي في إنبات البذور وطول الروية والبذور والجذور وأوزانهما الجافة لجميع أصناف الحنطة. وفي دراسة الشيب (2012) أن إضافة المجموع الخضري لل베타 وإليزام 6.3% بسبب تثبيط في نوعين من الحنطة قياستا بالمقارنة، أن المثانيات النباتية الناتجة من عدة مصادر تشكل مكونات مهمة من النبات ومساعد في تحسين النباتات على هيئة أنسجة مغذية تفعل طرقاً وبدون الأيديولوجية أو غمر ببابولوجية وخلال التحلل تحدي عدة تغييرات معقّدة من تحوّلات وتكوينات لهذا فأن النبات قد تحوي على كميات مختلفة من المركبات الكيميائية والتي لها تأثيرات مهمة على جميع أوجه تحول النباتات وأنه خلال التحلل السريع للنباتات المتفحسة تكون المحاصيل المجاهزة بالصدور الأول من المعادن نمو النباتات فضلاً عن التثبيت الفعّالة في تركيب النبات عن طريق إضافة المادة العضوية أثر تثبيت التجربة البابولوجية إلى أن المثلثات الناتجة عن التحول تمثل تأثيرات محفزة ومضيفة للكثير من العوامل الحيوية للنباتات كن vítة في البذور والتنفس ونمو البذور وموت البذور (الأزهري 1995)، أن السبب في التثبيت يرجع إلى تحلل المجموع الخضري للنباتات الممزوجة بالرئة مما يؤدي إلى تحرر مواد حيوية تجمع بكميات عالية وتعطي تأثيرات البذور وتقلل من انتصاف النباتات إلى داخل النباتات والتأثير المباشر في نمو النبات ما يؤدي إلى ضعف كفاءتها في الامتصاص حيث تتحلل المركبات الأليوبولياتية إلى النباتات وتتراكم فيها أو تدمير على سطوح النباتات وظهور تأثيرها في النباتات المزروعة (Rice, 1984).
أما من ناحية تأثير مخلفات النباتات في محتوى الكاربوهيدرات فقد ظهر تباين في الاستجابات بين الزيادة والنقصان، أن محتوى الكاربوهيدرات بعد دليلًا لفعالية العمليات النباتية في النباتات و مدى نشاطه إذ أنه يرتبط بكفاءة عملية البناء الضوئي والتنفس، وأن تشجيع المغذيات تكون من العوامل المسؤولة عن تحديد السكريات في النباتات وفي ضوء ذلك فقد أعطى الباحثون اهتمامًا كبيرًا لتأثير المستخلصات النباتية وعلاقته في محتوى الكورنفولزية وزيادة امتصاص الطاقة الضوئية Gupta & Pawal والنبات الضوئي الذي ينتج عنه زيادة الوزن ومحتوى السكريات وقد أكد لـ Chenopodium album (1986) بأن المستخلصات المائية المباردة والساخنة للجذور الطريقة لنبات L. سببت الزيادة في الوزن الجاف ومحتوى الكاربوهيدرات في Chenopodium album و Chenopodium album L. أوراق النباتة. كما وأن إفرازات جذور L. سببت زيادة في الوزن الجاف ومحتوى الكاربوهيدرات في نبات النزهة الضوء، أن المستخلصات النباتية تختلف في تأثيرها تبعًا لاختلاف مكوناتها وباختلاف الأنواع النباتية المعاملة فقد تحتوي المستخلصات النباتية على عوامل مساعدة أو بعض العناصر والمغذيات الضرورية التي تساعد في زيادة كفاءة عملية البناء الضوئي ومن ثم زيادة محتوى الكاربوهيدرات، وتتفق النتائج مع دراسة عبد الله (2012) من أن إضافة المتبقيات للمجموع الخضري للحليب سببت تخفيفًا واضحة في محتوى الكاربوهيدرات في صفرين من الحنطة قياسًا بالمقارنة.
المصادر

الحسائي، ذو اللفلار جعفر حمزة. (2010). تأثير الخضروات المفروضية (Helianthus annus L.) في نمو محصولي Helianthus annus في المناظر الطبيعية ومستويات النمو في مناطق مختلفة، رسالة ماجستير، كلية الزراعة، جامعة الكوفة.

الطائي ،صلاح محمد سعيد.(2001). تأثير المخلفات النباتية للطماطس في أنواع البذور والنمو لأصناف من الخنثية Triticum durum L. . مجلة القادسية للعلوم

طباش،سمير والمغري،صباح.(2005).تأثير المناقة عن طريق إفراز مواد مثبطة للنمو لبعض أنواع الأعشاب الضارة . مجلة بابل للأعمال الهندية،العدد (21).

Triticum aestivum L في نمو وحواصل صنفين من الحنطة L. graecum

رسالة ماجستير،كلية التربية،جامعة الموصل.

فيصل،محمد سعيد،الحذاني،جاسم محمود،كاظم،حيسن،محسن.(2005).التأثير الأليوباثي

لبذور نباتات الخنثية(النظام) المعامل بالجريلين تحت أعمار مختلفة في أنواع

Triticum ونمو باذ기를 صنفين من الخنثية الناعمة (أبو غريب،3مكسيبالك).

مجلة علوم الراقدين،16(8):279-289.

المزوري،حسن امين.(1996). دراسات في الجه الأليوباثي للذرة الصفراء،أطروحة

دكتوراه،جامعة المستنصرية،بغداد.

ISTA., 1976. Intension rules for seed testing/ Seed Sci. and Tech. 34.

