Main Subjects : Life physics


Study the effect of defects on the quantum efficiency of perovskite solar cells

hajar Khalil Ibrahim; Ahmed Mohamed Salama; Qais Thanon Algwari

College Of Basic Education Research Journal, 2022, Volume 18, Issue 2, Pages 995-1010
DOI: 10.33899/berj.2022.174571

Perovskite solar cells (PSCs) have generated considerable interest in the field of solar energy. With the rapid development of fabrication technology, high efficiency, environmentally friendly perovskite solar cells are becoming more attractive as candidates for power generation. Defects in the absorber and interface layers of mixed lead halide perovskite solar cells reduce the efficiency and stability of the cells. The current study examined the impact of defects density, defect capturing cross-section, defect level, and defect type on the quantum efficiency (QE) of the absorber layer. Furthermore, the impact of defects in the hole transport layer/absorber and electron transport layer/absorber interface layers is also be extensively studied. SCAPS-1D will be used to simulate perovskite solar cells in this work. The perovskite solar cells structure proposed is FTO/ ETM/ absorber/ HTM structure based on TiO2 as ETM layer; Cu2O as HTM layer, and on CH3NH3PbI3 as absorber layer. According to the results, the quantum efficiency QE reduced sharply from 90.2% to 20% with varying the density of the defect Nt and the capture cross-section carriers σ in absorber layer from 1015 cm-3 to 10 18 cm-3 and 2×10-13 cm2 to 2×10-10 cm2, respectively. Additionally, it is discovered that the capture cross-section carriers exhibits behavior similar to that of the absorber layer's defect density.

The performance of Perovskite solar cells with silicon carbide as an interfacial layer

Dena Nameer Qasim Agha; Dena Nameer Qasim Agha

College Of Basic Education Research Journal, 2022, Volume 18, Issue 2, Pages 1127-1143
DOI: 10.33899/berj.2022.174577

The current work involved the numerical simulation of investigating the impact of conduction band offset (CBO) on the perovskite solar cell parameters. The solar cell structure under investigation comprises the (Spiro OMe TAD), (CH3NH3PbI3), and (SnO2) as HTL, the absorber layer, and ETL with electron affinities (χ) of (-2.45, -3.9, and -3.75) eV respectively. The conduction band alignment was controlled by inserting an interfacial layer between the absorber and ETL. The inserting layer is a thin layer of 3C-SiC material. Before utilizing the interfacial layer, a parametric study was attained, which included the doping variation and thickness variation of each layer. According to the findings, the device performs best at a thickness of 200 nm, 400 nm, 300 nm for HTL, perovskite absorber layer, and ETL respectively, with a doping concentration of 1019 cm-3, 1014 cm-3, and 1019 cm-3 for the same layers. These parameters provide a Jsc, Voc, FF, and PCE of 26.1 mA.cm-2, 1.11 V, 83.23%, and 24.19% respectively. Utilizing 3C-SiC as an interfacial layer with thickness 100 nm and doping 1018 cm-3 improved the performance of the device. According to the electron affinity for the proposed structure (the absorber layer and ETL) with the interfacial layer produce spike-spike band alignment. The results showed that the spike-spike band structure with (1= 0.07) eV for absorber layer with 3C-SiC and (2=0.08) eV for 3C-SiC interfacial layer and SnO2 as ETL, produces a good improvement in the cell performance with an increase in PCE (from 24.19 % to 28.36 %).

Study the Effect Adding Back Reflection Layer (BSF) to the Solar Cell (CdTe/CdS:O/Zn2SnO4/FTO) and the Effect on Electrical Properties (I-V) Using Simulation Program SCAPS-1D

Adnan حسن Alumary

College Of Basic Education Research Journal, 2022, Volume 18, Issue 1, Pages 1030-1050
DOI: 10.33899/berj.2022.173441

Abstract
This research includes study the electrical properties using programming simulation SCAPS-1D, depending upon on numerical analysis from simulation of solar cells, where solar cell consisting of Cadmium Telluride (CdTe) used as absorber layer with thickness (0.05-5.0µm) and the window layer CdS:O with thickness (0.025µm) and Buffer Layer (Zn2SnO4) with thickness (0.05µm), (FTO) layer as transparent conductive oxide layer (TCO) with thickness (0.1µm), and added background reflection layer (BSF) which placed between metal back contact layer and the absorption layer in order to increase the amount of Voc and the efficiency of the solar cell because the background reflection layer (BSF) works to reduce recombination in the back contact, and the carriers are strengthened by reversing it towards the main link. With a thickness of (1.0µm), the results obtained were {Voc=0.83V, Jsc=36.90mA/cm2, FF=85.55%, η= 26.33%}. The thickness of the absorption layer has been studied and the effect of temperatures and bandgap energies was studied.

تأثیر زمن التنمیش على مورفولوجیة سطوح زرنیخید الغالیوم المنتجة بطریقة التنمیش الکیمیائی الضوئی باستخدام ضوء الشمس

Islam Nasser Yousif لا یوجد

College Of Basic Education Research Journal, 2021, Volume 17, Issue 2, Pages 1550-1570
DOI: 10.33899/berj.2021.168557

تم تحضیر زرنیخید الغالیوم المسامی من شرائح زرنیخید الغالیوم البلوری نوع (n-type) وذات اتجاه بلوری (111) ومقاومیة (0.00245 Ohm cm) عن طریق التنمیش الکیمیائی الضوئی باستخدام ضوء الشمس کمصدر ضوئی وذلک لتمیزها على العدید من مصادرها الصناعیة الاخرى کالمصابیح الکهربائیة المختلفة (مصباح الهالوجین، مصباح التنکستن) والمصادر الضوئیة المختلفة فی اللیزر، وتم دراسة تأثیر زمن التنمیش على المورفولوجیة السطحیة لزرنیخید الغالیوم باستخدام مجهر القوة الذریة (AFM)، وبینت النتائج إمکانیة الحصول على طبقات من زرنیخید الغالیوم المسامی ذات طبیعة سطح مختلفة عند تغییر أزمنة التنمیش (50 min، 40 min، 30 min) وثبات کل من ترکیز الحامض عند (HF 40%) وشدة الإضاءة عند (8901 mw/cm2)، حیث تکونت طبقات مسامیة بسمک (31.70 nm، 30.13 nm، 15.28 nm) وبمعدل أقطار للحبیبات والجسیمات النانویة (64.31 nm، 98.73 nm، 80.26 nm) على التوالی، وإن کل من الخشونة السطحیة وسمک الطبقة المسامیة للشرائح المحضرة تزداد عند زیادة زمن التنمیش وتقل عند نقصان زمن تنمیشها، وُوجد ان إنتاج تراکیب زرنیخید الغالیوم المسامی النانوی ذات ضرورة مهمة للحصول على سطح بمواصفات ممیزة من أجل استخدامها فی نبائط الالکترونات الضوئیة والخلایا الشمسیة.